Mathematics Faculté des sciences d'Orsay Sheet 3

Groups and geometry M2 AAG 2024–2025

Bracket between vector fields, and the exponential map

Exercise 1 Let X be a left-invariant vector field on a Lie group G. Compute the flow φ_t of X.

Exercise 2 Let X, Y be two vector fields on a manifold M and φ_t , ψ_t the local flows of X and Y.

- 1. Show that $[X, Y] = \frac{d}{dt}\Big|_{t=0} (\varphi_t)^* (Y).$
- 2. Show that, for all $x \in M$, $\frac{d}{dt}\Big|_{t=0} \psi_t \circ \varphi_t \circ \psi_{-t} \circ \varphi_{-t}(x) = 0.$
- 3. Show that, for all $x \in M$, $[X, Y](x) = \frac{d}{dt}\Big|_{t=0^+} \psi_{\sqrt{t}} \circ \varphi_{\sqrt{t}} \circ \psi_{-\sqrt{t}} \circ \varphi_{-\sqrt{t}}(x)$.

Let X, Y be two elements in the Lie algebra \mathfrak{g} of a Lie group G, and exp : $\mathfrak{g} \to G$ the exponential map of G.

- 4. Show that $\frac{d}{dt}\Big|_{t=0} \exp(tX) \exp(tY) \exp(-tX) \exp(-tY) = 0.$
- 5. Show that $[X, Y] = \frac{d}{dt}\Big|_{t=0^+} \exp(\sqrt{t}X) \exp(\sqrt{t}Y) \exp(-\sqrt{t}X) \exp(-\sqrt{t}Y).$

Universal cover of the group $SL_2(\mathbb{R})$

Exercise 3 Denote by $SL_2(\mathbb{R})$ the group of 2×2 matrices of determinant +1 with real entries.

1. Show that any one-parameter subgroup $(g^t)_{t \in \mathbb{R}}$ of $SL_2(\mathbb{R})$ is conjugate in $SL_2(\mathbb{R})$ to one of the following three subgroups:

$$\left(s^{t} = \left(\begin{array}{cc}e^{at} & 0\\0 & e^{-at}\end{array}\right)\right)_{t \in \mathbb{R}}, \ \left(u^{t} = \left(\begin{array}{cc}1 & at\\0 & 1\end{array}\right)\right)_{t \in \mathbb{R}}, \ \left(r^{t} = \left(\begin{array}{cc}\cos at & -\sin at\\\sin at & \cos at\end{array}\right)\right)_{t \in \mathbb{R}}.$$

If a is nonzero, $(g^t)_{t \in \mathbb{R}}$ is called *hyperbolic* in the first case, *parabolic* in the second case, *elliptic* otherwise.

- 2. If $g^t = \exp(tZ)$ with $Z \in \mathfrak{sl}_2(\mathbb{R})$, relate the hyperbolic, parabolic or elliptic nature of (g^t) to the sign of B(Z, Z), where B is the Killing form of $\mathfrak{sl}_2(\mathbb{R})$.
- 3. Is the map $\exp : \mathfrak{sl}_2(\mathbb{R}) \to \mathrm{SL}_2(\mathbb{R})$ surjective?

Denote by $\pi : \widetilde{\mathrm{SL}_2(\mathbb{R})} \to \mathrm{SL}_2(\mathbb{R})$ the universal cover of $\mathrm{SL}_2(\mathbb{R})$, and by $\widetilde{\mathrm{exp}}$ the exponential map from $\mathfrak{sl}_2(\mathbb{R})$ to $\widetilde{\mathrm{SL}_2(\mathbb{R})}$.

- 4. What is the relation between exp, $\widetilde{\exp}$ and π ?
- 5. Describe the centre of $SL_2(\mathbb{R})$.
- 6. Show that if B(Z,Z) < 0, then $(\widetilde{\exp}(tZ))_{t \in \mathbb{R}}$ is an embedded Lie subgroup of $SL_2(\mathbb{R})$, isomorphic to \mathbb{R} and containing the centre of $\widetilde{SL_2(\mathbb{R})}$.
- 7. Are there any connected compact subgroups besides $\{e\}$ in $SL_2(\mathbb{R})$?