Mathematics Faculté des sciences d'Orsay

Exercise 1 Classify up to isomorphism

- all connected Lie groups with $\mathfrak{aff}(\mathbf{R})$ as their Lie algebra;
- all connected Lie groups with $\mathfrak{heis}(3)$ as their Lie algebra.

Exercise 2 Let G be a Lie group with Lie algebra \mathfrak{g} .

- 1. Let H be a closed subgroup of G. Show that if H is not discrete, it contains a nontrivial one-parameter subgroup.
- 2. Denote by $\mathfrak{z}(\mathfrak{g})$ and Z(G) the centres of the Lie algebra \mathfrak{g} and of the Lie group G. Assuming G is connected, show that Z(G) is discrete if and only if $\mathfrak{z}(\mathfrak{g}) = \{0\}$.
- 3. Give an example of a connected Lie group G such that $\mathfrak{z}(\mathfrak{g}) = \{0\}$ but $Z(G) \neq \{e\}$.

Exercise 3 Let V be an **R**-vector space of finite dimension and $\omega : V \times V \to \mathbf{R}$ an anti-symmetric bilinear form. Consider the operation * on $V \times \mathbf{R}$ defined by

$$\forall v, v' \in V \ \forall t, t' \in \mathbf{R} \quad (v, t) * (v', t') = \left(v + v', t + t' + \frac{1}{2}\omega(v, v')\right)$$

- 1. Show that $(V \times \mathbf{R}, *)$ is a Lie group, which we will denote by G.
- 2. Describe the Lie algebra \mathfrak{g} of G, and show it is nilpotent.
- 3. Show that $\exp_G : \mathfrak{g} \to G$ is a diffeomorphism.

Exercise 4 Let \mathfrak{g} be a finite-dimensional Lie algebra over \mathbf{R} such that $\mathfrak{z}(\mathfrak{g}) = \{0\}$. Show there exists a connected Lie group G such that $Z(G) = \{e\}$, whose Lie algebra is isomorphic to \mathfrak{g} . Show that such a Lie group is unique up to isomorphism.

Exercise 5 Let $n \ge 1$ be an integer.

Show any compact subgroup of $GL(n, \mathbf{R})$ is conjugate to a subgroup of $O(n, \mathbf{R})$.

Exercise 6 Recall that the Heisenberg group, Heis(3), consists in upper triangular matrices in $\mathcal{M}_3(\mathbf{R})$ with all diagonal elements equal to 1.

Let Γ be the subgroup generated by $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and $Z = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in \mathfrak{heis}(3).$

- 1. Let $\varphi : \mathfrak{heis}(3) \to \mathfrak{sl}_n(\mathbf{R})$ be a Lie algebra morphism. Show that $\varphi(Z)$ is nilpotent.
- 2. Deduce that $\{\exp(t\varphi(Z)) \mid t \in \mathbf{R}\}$ is either trivial or unbounded.

Let ρ : Heis(3)/ $\Gamma \to \operatorname{GL}_n(\mathbf{R})$ be a Lie group morphism.

- 3. Show that the one-parameter sugbroup $(\exp(td_e\rho(Z)))_t$ is compact.
- 4. Deduce that ρ is not injective. In other words, $\text{Heis}(3)/\Gamma$ has no faithful linear representation.