Mathematics Faculté des sciences d'Orsay

Sheet 5

Coadjoint orbits

Exercise 1 Fix a smooth action of a compact real Lie group G on a manifold M. To each X in \mathfrak{g} , associate the vector field X_M on M defined by $X_M(x) = \frac{d}{dt}_{|t=0} \exp(tX)x$.

- 1. Show that, for any X, Y in \mathfrak{g} , $[X_M, Y_M] = -[X, Y]_M$.
- 2. Given $x \in M$, denote by \mathfrak{g}_x the Lie algebra of the stabiliser G_x . Show that $X \mapsto X_M(x)$ induces an isomorphism between $\mathfrak{g}/\mathfrak{g}_x$ and $T_x(G \cdot x)$.

Call adjoint representation of G the representation $G \to \operatorname{GL}(\mathfrak{g})$ that maps g to $\operatorname{Ad}(g)$, and coadjoint representation of G the representation $G \to \operatorname{GL}(\mathfrak{g}^*)$ that maps g to ${}^t(\operatorname{Ad}(g^{-1}))$.

- 3. Show that, for all X, Y in \mathfrak{g} , $X_{\mathfrak{g}}(Y) = [X, Y]$.
- 4. Show that, for all X in \mathfrak{g} and all λ in \mathfrak{g}^* , $X_{\mathfrak{g}^*}(\lambda) = -t(\operatorname{ad} X)(\lambda)$.
- 5. Fix λ in \mathfrak{g}^* . Show that the bilinear form $\underline{\omega}$ defined on \mathfrak{g} by $\underline{\omega}(X,Y) = \lambda([X,Y])$ passes to the quotient to a nondegenerate bilinear form on $\mathfrak{g}/\mathfrak{g}_{\lambda}$.
- 6. Show that the *G*-invariant bilinear form ω induced by $\underline{\omega}$ on G/G_{λ} is symplectic, i.e. it is a differential 2-form that is nondegenerate at each point and closed.
- 7. Describe the orbits of the coadjoint action of $SO_3(\mathbb{R})$.

Actions of $SL_2(\mathbb{R})$ and representations of $\mathfrak{sl}_2(\mathbb{R})$

Exercise 2 We are interested in the action of $SL_2(\mathbb{R})$ on (very) low-dimensional manifolds.

- 1. Let M be a connected manifold of dimension 1 admitting a smooth and transitive action of the group $SL_2(\mathbb{R})$.
 - (a) Show that such an action implies the existence of a sub-Lie algebra \mathfrak{h} of $\mathfrak{sl}_2(\mathbb{R})$ isomorphic to $\mathfrak{aff}(\mathbb{R})$.
 - (b) By studying the eigenvalues of $\operatorname{ad}(X)$ for $X \in \mathfrak{h}$, show that \mathfrak{h} can be identified to the subalgebra of $\mathfrak{sl}_2(\mathbb{R})$ generated by $E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.
 - (c) Deduce that M is diffeomorphic to the circle S^1 .
- 2. Deduce that any smooth action of $SL_2(\mathbb{R})$ on the circle is either trivial or transitive.
- 3. Show that there is no other nontrivial smooth action of $SL_2(\mathbb{R})$ on the real line.
- 4. Consider a smooth action of $SL_2(\mathbb{R})$ on the sphere S^2 . Let $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{R})$.
 - (a) Using Exercise 1, show there exist points x, y in S^2 such that $H \in \mathfrak{g}_x$ and $E \in \mathfrak{g}_y$. One can use the fact that any smooth vector field on S^2 vanishes somewhere.
 - (b) Deduce that the action under consideration cannot be transitive.