Mathematics Faculté des sciences d'Orsay

Groups and geometry M2 AAG 2024-2025

Exercise 1 Canonical connection of a riemannian submanifold.

1. Using the following coordinates for the sphere S^2 :

$$(\theta, \varphi) \mapsto (\cos \theta \cos \varphi, \cos \theta \sin \varphi, \sin \theta)$$

Sheet 6

compute

$$D_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \theta}, \qquad D_{\frac{\partial}{\partial \varphi}} \frac{\partial}{\partial \theta}, \qquad D_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \varphi}, \qquad D_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \varphi}.$$

2. Parametrize the torus T^2 from $S^1 \times S^1$ in two ways:

$$\varphi_1(\theta,\varphi) = (\exp(i\theta), \exp(i\varphi))$$
$$\varphi_2(\theta,\varphi) = ((2+\cos\theta)\cos\varphi, (2+\cos\theta)\sin\varphi, \sin\theta)$$

Compare the values of $\left[\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \varphi}\right]$ for T^2 with its structure of riemannian submanifold of \mathbb{R}^4 given by φ_1 and its structure of riemannian submanifold of \mathbb{R}^3 given by φ_2 .

Exercise 2 Parallel transport on a cone and on a sphere.

- 1. In \mathbb{R}^3 with cartesian coordinates (x, y, z), consider: a half-line from the origin in the xz plane at angle α with Oz; the revolution cone C of axis Oz that it generates; a curve $c: [a, b] \to C$ looping around the cone vertex; a parallel vector field X along c. Compute the angle between X(a) and X(b).
- 2. Same question for a parallel vector field along a small circle on the sphere S^2 .

Exercise 3 Geodesics.

- 1. Geodesics on \mathbb{R}^n are straight lines parametrized at constant velocity.
- 2. Geodesics on a riemannian *n*-manifold $M \subset \mathbb{R}^{n+p}$ are the curves with normal acceleration vector field (i.e. the field of acceleration vectors is everywhere normal to M).
- 3. Geodesics on the sphere $(S^n, \operatorname{can})$ are great circles parametrized at constant velocity.

Exercise 4 More geodesics.

- 1. Geodesics on the standard flat *n*-torus $\mathbb{R}^n/\mathbb{Z}^n$.
- 2. Geodesics on other flat *n*-tori \mathbb{R}^n/Λ .
- 3. Geodesics on the standard flat Klein bottle.
- 4. Geodesics on other flat Klein bottles.