Exercise 1. Let G be a (real) Lie group with Lie algebra \mathfrak{g} .

- 1. Prove there is a unique connection ∇ on TG such that, for any leftinvariant vector fields X and Y on G, $\nabla_X Y = \frac{1}{2}[X, Y]$.
- 2. Prove that ∇ is torsion free.
- 3. Compute R(X, Y)Z for left-invariant vector fields X, Y and Z.
- 4. Prove that, for every X in \mathfrak{g} and every $g \in G$, $t \mapsto g \exp_G(tX)$ is a geodesic for ∇ . Prove that all geodesics have this shape.
- 5. In this question, we assume G is equipped with a Riemannian metric h that is invariant under all left and right translations (we say h is bi-invariant). We denote by h_1 the corresponding inner product on \mathfrak{g} .
 - (a) Prove that, for every $g \in G$, h_1 is Ad(g)-invariant.
 - (b) Prove that, for every $X \in \mathfrak{g}$, $\operatorname{ad}(X)$ is antisymmetric on \mathfrak{g} with respect to h_1 .
 - (c) Using the method used in class to prove uniqueness of the Levi-Civita connection, compute that Levi-Civita connection acting on left-invariant vector fields. Describe Riemannian geodesics.
 - (d) For every X and Y in \mathfrak{g} with ||X|| = ||Y|| = 1 and $X \perp Y$, compute the sectional curvature of Span(X, Y).
- 6. We now assume G is compact.
 - (a) Using a right-invariant volume form on G, prove that \mathfrak{g} admits an inner product invariant under the adjoint action of G on \mathfrak{g} .
 - (b) Prove that G admit a bi-invariant metric.
 - (c) Prove \exp_G is surjective.