Exercise 1. Let G be a (real) Lie group with Lie algebra g.

1. Prove there is a unique connection V on T'G such that, for any left-
invariant vector fields X and ¥ on G, VY = 3[X,Y].

Solution. We fix once and for all a basis ey, ..., e, of g and use the
same notation for the corresponding left-invariant vector fields on G.
Any vector field X on G can be decomposed as » . X ‘e, where each
X% is a function from G to R. The vector field X is left-invariant if
and only if every X, is a constant function. Indeed constant function
clearly give rise to an invariant X. Conversely if X is invariant then
X coincides at 1, hence everywhere, with the left-invariant } . X ‘(e
that has constant component functions.
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We first prove uniqueness of V. Assume V is such a connection. Then
for every vector fields X and Y, we have

= Z X’V Z Yje since V is a connection

= ZXZ Z ( e;Y7)e; + YJVeie]) since V is a connection

. , 1
= ZXZ Z ((eiYJ)ej + YJ§[ei, ej]> by assumption
i j

The end result does not depend on V so we proved uniqueness.

For existence, we define VY by the above formula. We first need to
prove that we get a connection. The linearity over €*°(G) for the X
slot is clear, and same for linearity over R for the Y slot. We need to
check the product rule. In V x(fY’) the only extra piece compared to
IV Y comes from e,(fY7) = (e;f)Y? + fe,; Y7 so we get

Vx(fY) = [VxY + Z X Z (e, )Y 7)e,
_vaY+Z ZX@ e, f))Y e,
= [VxY + Z X[)YVe,

= [VY + (Xf)Y



It remains only to show that V satisfies the required formula for left
invariant vector fields. This follows from the fact that those vector
fields have constant components on the e, basis so there are no e;Y?
terms for them.

. Prove that V is torsion free.

Solution. Fix g in G and fix v and v in T,G. We want to prove
T(u,v) = 0. We know that, for every vector fields X and Y taking
values v and v at g, we have T'(u,v) = VY — V. X — [X,Y]. We
can choose such X and Y that are left-invariant. Indeed one can use
left-translation to trivialize TG and extend u and v to constant vector
fields. More explicitly, one can simply define X = (¢" = T, L ,-1(u))
and use the same idea for Y.

The announced vanishing is then a direct consequence of the defining
property of V.

. Compute R(X,Y)Z for left-invariant vector fields X, Y and Z.

Solution. We use the definition and the Jacobi identity for the Lie
bracket.

R(X,Y)Z =Vx(VyZ)-Vy(Vx Z)— V[X,Y]Z
1

— l[X, v, 7] — Z[Y’ (X, Z]] — %[[X, Y], Z]

= JUX. YL 2+ 1Y, X, Z)) - 1Y, X, Z)) - 51X, V], 2]

—

W

1
:_ZHX’Y]’Z]'

. Prove that, for every X in g and every g € G, t = gexp,(tX) is a
geodesic for V. Prove that all geodesics have this shape.

Solution. Fix g in G and X in g. Set 7y = (¢ = gexp,(tX)). We want
to prove that « is a geodesic for V. The key point from the Lie group
part of the course is the formula, for every ¢, v(t) = ¢’ (g) where ¢y
is the flow of X (seen as a left-invariant vector field on G). Hence, for
every t, 7'(t) = X, (one can also rederive this directly).

In particular 7" seen as a vector field along ~ actually comes from an
ambiant vector field. The fundamental property of induced connections



then gives VW'W/ =V, X =V X. But X is left-invariant so Vy X =
1[X, X] = 0 and v is indeed a geodesic.

We now claim that every geodesic has this shape. Indeed we have
geodesics with this shape for every possible initial condition. Fix g in
G and v in T)G. Let X be the unique left-invariant vector field with
value v at g. We see X as an element of g. Then ¢ = gexp(tX) starts

at g with velocity Ty L, (X) = X, = v.

. In this question, we assume G is equipped with a Riemannian metric
h that is invariant under all left and right translations (we say h is
bi-invariant). We denote by h; the corresponding inner product on g.

(a) Prove that, for every g € G, h; is Ad(g)-invariant.

Solution. By assumption, h is both left and right invariant so,
for every g, Lyh = R;h = h. And ¢, = L, o R, so c;h = h.
This is true at every point in GG, and gives the announced result
Ad(g)*hy = hy at 1.

Remark: there are two closely related pull-back operations at play
here. The purely algebraic one takes an inner product b on a
vector space F' and a linear map ¢ : E — F and builds ¢*b on F
sending (e, e”’) to b(p(e),¢(e’)). If ¢ is an isomorphism then ¢*b
is also an inner product. Let’s use the temporary notation ¢*b for
this algebraic version. Now consider a smooth map f: M — N
and a Riemannian metric h on N. We can pull back h to get f*h.
At every m € M, f*h is the bilinear form (T, f)*h () on 1,, M.
If fis (local) diffeomorphism, f*h is a Riemannian metric. When

M =N =G and f =c, and m = 1 we have (c;h); = Ad(g)*h;.

(b) Prove that, for every X € g, ad(X) is antisymmetric on g with
respect to h;.

Solution. The previous question ensures the Lie group morphism
Ad : G — End(g) lands into the orthogonal group of hy. Its
derivative at 1, which is ad, goes from g to the Lie algebra of the
orthogonal group which is the space of h;—antisymmetric maps.

(c¢) Using the method used in class to prove uniqueness of the Levi-
Civita connection, compute that Levi-Civita connection acting on
left-invariant vector fields. Describe Riemannian geodesics.

Solution. Consider three left-invariant vector fields X, Y and Z.
As in the proof of the uniqueness of the Levi-Civita connection,



we can write the compatibility condition for all circular permu-
tations of X, Y and Z and use the torsion free condition and a
suitable combination of the three compatibility condition to keep
only VY as the only covariant derivative. What is specific to
our current situation is that all inner products of those vector
fields are constant since they are left-invariant functions on G. So
we get:

2VyY,Z) =([X,Y],Z)+ (Y, [X, Z]) + (X,[Y, Z])

Next we can use the previous question which ensures that ad is
anti-symmetric to rewrite this as

2<VXY7 Z> = <[X’Y]7Z>7<[X7Y]7Z> - <[Y7X]72>

which then gives
1

Since this is true for every left-invariant Z and, at each point,
every vector is the value of a left-invariant vector field, we get
the expected formula for VY. According to Question 4, Rie-
mannian geodesics are exactly the left-translates of one-parameter
subgroups.

(d) Forevery X and Y in g with | X|| = V]| =1and X L Y, compute
the sectional curvature of Span(X,Y).

Solution. We use the formula derived for R and antisymmetry
of ad(Y).

1
— —|1x, Y]|?
neadl

6. We now assume G is compact.



(a)

Using a right-invariant volume form on G, prove that g admits an
inner product invariant under the adjoint action of G on g.

Solution. Let Q be a right-invariant volume form on G (it can
be constructed by choosing any volume form on the Lie algebra
and pushing it by all right translations R).

We start with any inner product (-,-) on g and average it to
mo= [ A9
geG
Let us check this is Ad-invariant. Fix g, € G.

Ad(go)*hy = Ad(gy)" / Ad(g)* (-, )0

geG

The second-to-last equality uses that €2 is right-invariant and the
last equality is the change of variable theorem for integrals of
differential forms: for every top-degree form « on G with compact

support and every measurable A C G, fA Ry = fR 4
g

Prove that G admit a bi-invariant metric.

Solution. The previous question gives us an inner product h; on
g which is Ad-invariant. We then use left-translations to turn it
into a metric h which is left-invariant by construction. We claim
that is it also right-invariant. In order to prove this, fix g € G.
We want to prove R h = h. Both sides are left-invariant metrics
on GG (using that every left-translation commutes with every right
translation and h is left-invariant). So it suffices two prove they
coincide at 1. And Rjh = cjh since h is left-invariant so they
desired equality is exactly Ad(g)*h; = h; (see the discussion in
the solution to Question 5a).



(c) Prove exp, is surjective.

Solution. Fix g in G. We want to prove ¢ is in the image of
exp,. Equip G with a bi-invariant metric given by the previ-
ous question. Since G is compact, it is metrically complete and
Hopf-Rinow gives a (minimizing) geodesic v from 1 to g. By
Question 5¢, v is a left-translate of a one-parameter subgroup:
v = (t = ggexpy(tX)) for some g, in G and some X in g. Since
7(0) =1, gy = 1 and g is indeed in the image of exp,,.



