
Exercise 1. Let 𝐺 be a (real) Lie group with Lie algebra 𝔤.

1. Prove there is a unique connection ∇ on 𝑇 𝐺 such that, for any left-
invariant vector fields 𝑋 and 𝑌 on 𝐺, ∇𝑋𝑌 = 1

2 [𝑋, 𝑌 ].
Solution. We fix once and for all a basis 𝑒1, … , 𝑒𝑛 of 𝔤 and use the
same notation for the corresponding left-invariant vector fields on 𝐺.
Any vector field 𝑋 on 𝐺 can be decomposed as ∑𝑖 𝑋𝑖𝑒𝑖 where each
𝑋𝑖 is a function from 𝐺 to ℝ. The vector field 𝑋 is left-invariant if
and only if every 𝑋𝑖 is a constant function. Indeed constant function
clearly give rise to an invariant 𝑋. Conversely if 𝑋 is invariant then
𝑋 coincides at 1, hence everywhere, with the left-invariant ∑𝑖 𝑋𝑖(1)𝑒𝑖
that has constant component functions.
We first prove uniqueness of ∇. Assume ∇ is such a connection. Then
for every vector fields 𝑋 and 𝑌 , we have

∇𝑋𝑌 = ∇∑𝑖 𝑋𝑖𝑒𝑖
(∑

𝑗
𝑌 𝑗𝑒𝑗)

= ∑
𝑖

𝑋𝑖∇𝑒𝑖
∑

𝑗
(𝑌 𝑗𝑒𝑗) since ∇ is a connection

= ∑
𝑖

𝑋𝑖 ∑
𝑗

((𝑒𝑖𝑌 𝑗)𝑒𝑗 + 𝑌 𝑗∇𝑒𝑖
𝑒𝑗) since ∇ is a connection

= ∑
𝑖

𝑋𝑖 ∑
𝑗

((𝑒𝑖𝑌 𝑗)𝑒𝑗 + 𝑌 𝑗 1
2[𝑒𝑖, 𝑒𝑗]) by assumption

The end result does not depend on ∇ so we proved uniqueness.
For existence, we define ∇𝑋𝑌 by the above formula. We first need to
prove that we get a connection. The linearity over 𝒞∞(𝐺) for the 𝑋
slot is clear, and same for linearity over ℝ for the 𝑌 slot. We need to
check the product rule. In ∇𝑋(𝑓𝑌 ) the only extra piece compared to
𝑓∇𝑋𝑌 comes from 𝑒𝑖(𝑓𝑌 𝑗) = (𝑒𝑖𝑓)𝑌 𝑗 + 𝑓𝑒𝑖𝑌 𝑗 so we get

∇𝑋(𝑓𝑌 ) = 𝑓∇𝑋𝑌 + ∑
𝑖

𝑋𝑖 ∑
𝑗

((𝑒𝑖𝑓)𝑌 𝑗)𝑒𝑗

= 𝑓∇𝑋𝑌 + ∑
𝑗

(∑
𝑖

𝑋𝑖(𝑒𝑖𝑓))𝑌 𝑗𝑒𝑗

= 𝑓∇𝑋𝑌 + ∑
𝑗

(𝑋𝑓)𝑌 𝑗𝑒𝑗

= 𝑓∇𝑋𝑌 + (𝑋𝑓)𝑌



It remains only to show that ∇ satisfies the required formula for left
invariant vector fields. This follows from the fact that those vector
fields have constant components on the 𝑒𝑖 basis so there are no 𝑒𝑖𝑌 𝑗

terms for them.

2. Prove that ∇ is torsion free.
Solution. Fix 𝑔 in 𝐺 and fix 𝑢 and 𝑣 in 𝑇𝑔𝐺. We want to prove
𝑇 (𝑢, 𝑣) = 0. We know that, for every vector fields 𝑋 and 𝑌 taking
values 𝑢 and 𝑣 at 𝑔, we have 𝑇 (𝑢, 𝑣) = ∇𝑋𝑌 − ∇𝑌 𝑋 − [𝑋, 𝑌 ]. We
can choose such 𝑋 and 𝑌 that are left-invariant. Indeed one can use
left-translation to trivialize 𝑇 𝐺 and extend 𝑢 and 𝑣 to constant vector
fields. More explicitly, one can simply define 𝑋 = (𝑔′ ↦ 𝑇𝑔𝐿𝑔′𝑔−1(𝑢))
and use the same idea for 𝑌 .
The announced vanishing is then a direct consequence of the defining
property of ∇.

3. Compute 𝑅(𝑋, 𝑌 )𝑍 for left-invariant vector fields 𝑋, 𝑌 and 𝑍.
Solution. We use the definition and the Jacobi identity for the Lie
bracket.

𝑅(𝑋, 𝑌 )𝑍 = ∇𝑋(∇𝑌 𝑍)–∇𝑌 (∇𝑋 𝑍) − ∇[𝑋,𝑌 ]𝑍

= 1
4[𝑋, [𝑌 , 𝑍]] − 1

4[𝑌 , [𝑋, 𝑍]] − 1
2[[𝑋, 𝑌 ], 𝑍]

= 1
4([[𝑋, 𝑌 ], 𝑍] + [𝑌 , [𝑋, 𝑍]]) − 1

4[𝑌 , [𝑋, 𝑍]] − 1
2[[𝑋, 𝑌 ], 𝑍]

= −1
4[[𝑋, 𝑌 ], 𝑍].

4. Prove that, for every 𝑋 in 𝔤 and every 𝑔 ∈ 𝐺, 𝑡 ↦ 𝑔 exp𝐺(𝑡𝑋) is a
geodesic for ∇. Prove that all geodesics have this shape.
Solution. Fix 𝑔 in 𝐺 and 𝑋 in 𝔤. Set 𝛾 = (𝑡 ↦ 𝑔 exp𝐺(𝑡𝑋)). We want
to prove that 𝛾 is a geodesic for ∇. The key point from the Lie group
part of the course is the formula, for every 𝑡, 𝛾(𝑡) = 𝜑𝑡

𝑋(𝑔) where 𝜑𝑋
is the flow of 𝑋 (seen as a left-invariant vector field on 𝐺). Hence, for
every 𝑡, 𝛾′(𝑡) = 𝑋𝛾(𝑡) (one can also rederive this directly).
In particular 𝛾′ seen as a vector field along 𝛾 actually comes from an
ambiant vector field. The fundamental property of induced connections



then gives ∇𝛾′𝛾′ = ∇𝛾′𝑋 = ∇𝑋 𝑋. But 𝑋 is left-invariant so ∇𝑋𝑋 =
1
2 [𝑋, 𝑋] = 0 and 𝛾 is indeed a geodesic.
We now claim that every geodesic has this shape. Indeed we have
geodesics with this shape for every possible initial condition. Fix 𝑔 in
𝐺 and 𝑣 in 𝑇𝑔𝐺. Let 𝑋 be the unique left-invariant vector field with
value 𝑣 at 𝑔. We see 𝑋 as an element of 𝔤. Then 𝑡 ↦ 𝑔 exp𝐺(𝑡𝑋) starts
at 𝑔 with velocity 𝑇1𝐿𝑔(𝑋) = 𝑋𝑔 = 𝑣.

5. In this question, we assume 𝐺 is equipped with a Riemannian metric
ℎ that is invariant under all left and right translations (we say ℎ is
bi-invariant). We denote by ℎ1 the corresponding inner product on 𝔤.

(a) Prove that, for every 𝑔 ∈ 𝐺, ℎ1 is Ad(𝑔)-invariant.
Solution. By assumption, ℎ is both left and right invariant so,
for every 𝑔, 𝐿∗

𝑔ℎ = 𝑅∗
𝑔ℎ = ℎ. And 𝑐𝑔 = 𝐿𝑔 ∘ 𝑅𝑔 so 𝑐∗

𝑔ℎ = ℎ.
This is true at every point in 𝐺, and gives the announced result
Ad(𝑔)∗ℎ1 = ℎ1 at 1.
Remark: there are two closely related pull-back operations at play
here. The purely algebraic one takes an inner product 𝑏 on a
vector space 𝐹 and a linear map 𝜑 ∶ 𝐸 → 𝐹 and builds 𝜑∗𝑏 on 𝐸
sending (𝑒, 𝑒′) to 𝑏(𝜑(𝑒), 𝜑(𝑒′)). If 𝜑 is an isomorphism then 𝜑∗𝑏
is also an inner product. Let’s use the temporary notation 𝜑⋆𝑏 for
this algebraic version. Now consider a smooth map 𝑓 ∶ 𝑀 → 𝑁
and a Riemannian metric ℎ on 𝑁 . We can pull back ℎ to get 𝑓∗ℎ.
At every 𝑚 ∈ 𝑀 , 𝑓∗ℎ is the bilinear form (𝑇𝑚𝑓)⋆ℎ𝑓(𝑚) on 𝑇𝑚𝑀 .
If 𝑓 is (local) diffeomorphism, 𝑓∗ℎ is a Riemannian metric. When
𝑀 = 𝑁 = 𝐺 and 𝑓 = 𝑐𝑔 and 𝑚 = 1 we have (𝑐∗

𝑔ℎ)1 = Ad(𝑔)⋆ℎ1.

(b) Prove that, for every 𝑋 ∈ 𝔤, ad(𝑋) is antisymmetric on 𝔤 with
respect to ℎ1.
Solution. The previous question ensures the Lie group morphism
Ad ∶ 𝐺 → End(𝔤) lands into the orthogonal group of ℎ1. Its
derivative at 1, which is ad, goes from 𝔤 to the Lie algebra of the
orthogonal group which is the space of ℎ1–antisymmetric maps.

(c) Using the method used in class to prove uniqueness of the Levi-
Civita connection, compute that Levi-Civita connection acting on
left-invariant vector fields. Describe Riemannian geodesics.
Solution. Consider three left-invariant vector fields 𝑋, 𝑌 and 𝑍.
As in the proof of the uniqueness of the Levi-Civita connection,



we can write the compatibility condition for all circular permu-
tations of 𝑋, 𝑌 and 𝑍 and use the torsion free condition and a
suitable combination of the three compatibility condition to keep
only ∇𝑋𝑌 as the only covariant derivative. What is specific to
our current situation is that all inner products of those vector
fields are constant since they are left-invariant functions on 𝐺. So
we get:

2⟨∇𝑋𝑌 , 𝑍⟩ = ⟨[𝑋, 𝑌 ], 𝑍⟩ + ⟨𝑌 , [𝑋, 𝑍]⟩ + ⟨𝑋, [𝑌 , 𝑍]⟩

Next we can use the previous question which ensures that ad is
anti-symmetric to rewrite this as

2⟨∇𝑋𝑌 , 𝑍⟩ = ⟨[𝑋, 𝑌 ], 𝑍⟩–⟨[𝑋, 𝑌 ], 𝑍⟩ − ⟨[𝑌 , 𝑋], 𝑍⟩

which then gives

⟨∇𝑋𝑌 , 𝑍⟩ = ⟨1
2[𝑋, 𝑌 ], 𝑍⟩

Since this is true for every left-invariant 𝑍 and, at each point,
every vector is the value of a left-invariant vector field, we get
the expected formula for ∇𝑋𝑌 . According to Question 4, Rie-
mannian geodesics are exactly the left-translates of one-parameter
subgroups.

(d) For every 𝑋 and 𝑌 in 𝔤 with ‖𝑋‖ = ‖𝑌 ‖ = 1 and 𝑋 ⟂ 𝑌 , compute
the sectional curvature of Span(𝑋, 𝑌 ).
Solution. We use the formula derived for 𝑅 and antisymmetry
of ad(𝑌 ).

𝐾 = 𝑅(𝑋, 𝑌 , 𝑌 , 𝑋)

= ⟨−1
4[[𝑋, 𝑌 ], 𝑌 ], 𝑋⟩

= 1
4⟨ad(𝑌 )([𝑋, 𝑌 ]), 𝑋⟩

= −1
4⟨[𝑋, 𝑌 ], ad(𝑌 )(𝑋)⟩

= 1
4‖[𝑋, 𝑌 ]‖2

6. We now assume 𝐺 is compact.



(a) Using a right-invariant volume form on 𝐺, prove that 𝔤 admits an
inner product invariant under the adjoint action of 𝐺 on 𝔤.
Solution. Let Ω be a right-invariant volume form on 𝐺 (it can
be constructed by choosing any volume form on the Lie algebra
and pushing it by all right translations 𝑅𝑔).
We start with any inner product ⟨⋅, ⋅⟩ on 𝔤 and average it to

ℎ1 ∶= ∫
𝑔∈𝐺

Ad(𝑔)∗⟨⋅, ⋅⟩Ω

Let us check this is Ad-invariant. Fix 𝑔0 ∈ 𝐺.

Ad(𝑔0)∗ℎ1 = Ad(𝑔0)∗ ∫
𝑔∈𝐺

Ad(𝑔)∗⟨⋅, ⋅⟩Ω

= ∫
𝑔∈𝐺

Ad(𝑔0)∗ Ad(𝑔)∗⟨⋅, ⋅⟩Ω

= ∫
𝑔∈𝐺

Ad(𝑔𝑔0)∗⟨⋅, ⋅⟩Ω

= ∫
𝑔∈𝐺

((Ad ∘𝑅𝑔0
)(𝑔))∗⟨⋅, ⋅⟩𝑅∗

𝑔0
Ω

= ∫
𝑔∈𝐺

(Ad(𝑔)∗⟨⋅, ⋅⟩

The second-to-last equality uses that Ω is right-invariant and the
last equality is the change of variable theorem for integrals of
differential forms: for every top-degree form 𝛼 on 𝐺 with compact
support and every measurable 𝐴 ⊆ 𝐺, ∫𝐴 𝑅∗

𝑔𝛼 = ∫𝑅𝑔(𝐴) 𝛼.

(b) Prove that 𝐺 admit a bi-invariant metric.
Solution. The previous question gives us an inner product ℎ1 on
𝔤 which is Ad-invariant. We then use left-translations to turn it
into a metric ℎ which is left-invariant by construction. We claim
that is it also right-invariant. In order to prove this, fix 𝑔 ∈ 𝐺.
We want to prove 𝑅∗

𝑔ℎ = ℎ. Both sides are left-invariant metrics
on 𝐺 (using that every left-translation commutes with every right
translation and ℎ is left-invariant). So it suffices two prove they
coincide at 1. And 𝑅∗

𝑔ℎ = 𝑐∗
𝑔ℎ since ℎ is left-invariant so they

desired equality is exactly Ad(𝑔)∗ℎ1 = ℎ1 (see the discussion in
the solution to Question 5a).



(c) Prove exp𝐺 is surjective.
Solution. Fix 𝑔 in 𝐺. We want to prove 𝑔 is in the image of
exp𝐺. Equip 𝐺 with a bi-invariant metric given by the previ-
ous question. Since 𝐺 is compact, it is metrically complete and
Hopf-Rinow gives a (minimizing) geodesic 𝛾 from 1 to 𝑔. By
Question 5c, 𝛾 is a left-translate of a one-parameter subgroup:
𝛾 = (𝑡 ↦ 𝑔0 exp𝐺(𝑡𝑋)) for some 𝑔0 in 𝐺 and some 𝑋 in 𝔤. Since
𝛾(0) = 1, 𝑔0 = 1 and 𝑔 is indeed in the image of exp𝐺.


