Exercice 1. Convexité des boules de petit rayon.

Soient (M,g) une variété riemannienne, m un point de M, et U un voisinage de l'origine dans T_mM sur lequel \exp_m est un difféomorphisme sur son image. On considère sur U la métrique $h = \exp_m^* g$. Elle induit: d, distance sur U, et h_0 produit scalaire en 0 dont on note $||u|| = h_0(u,u)^{\frac{1}{2}}$, la norme induite.

- 1. Pour $x \in U$, le tenseur de Christoffel définit une application bilinéaire Γ_x sur T_xU à valeurs dans T_xU par la formule : $\Gamma_x(u,v) = \sum_{k=1}^n \sum_{i,j=1}^n \Gamma_{i,j}^k(x) u_i v_j e_k$. Montrer qu'il existe $\varepsilon_0 \in]0,1[$ tel que si x appartient à B_{ε_0} , la boule de centre 0 et de rayon ε_0 pour $\|\cdot\|$, on a $\|\Gamma_x(u,v)\| \le \delta \|u\| \cdot \|v\|$, avec $0 \le \delta < 1$.
- 2. Soit $c:[0,a] \to U$ une géodésique contenue dans B_{ε_0} . On suppose que pour un certain $0 < \varepsilon < \varepsilon_0$, et un certain $t_0 \in]0, a[$, on a $c(t_0) \in S_{\varepsilon} := \partial \overline{B}_{\varepsilon}$, et $\dot{c}(t_0) \neq 0$ tangent à S_{ε} . Montrer qu'il existe $\lambda > 0$ tel que pour t suffisamment proche de t_0 , l'on ait :

$$d(0, c(t))^2 \ge d(0, c(t_0))^2 + \lambda(t - t_0)^2.$$

(Indication : considérer la fonction $F(t) = \frac{\|c(t)\|^2}{2}$ et montrer que $F''(t_0) > 0$.)

3. En déduire que si r > 0 est assez petit, la boule \overline{B}_r est convexe au sens où si x et y sont dans \overline{B}_r , il existe une géodésique, unique à reparamétrage affine près et minimisante, reliant x et y, entièrement contenue dans \overline{B}_r .

Exercice 2. Courbure sectionnelle et longueur des petits cercles.

Soient (M, g) une variété riemannienne et x un point de M. Soient P un 2-plan dans T_xM et (u, v) une base orthonormée de P. On pose $H(r, \theta) = \exp_x(r\cos(\theta)u + r\sin(\theta)v)$ pour $0 < r < \inf_x \text{ et } \theta \in \mathbb{R}/2\pi\mathbb{Z}$. Pour un tel r, on note C_r la courbe $\theta \mapsto H(r, \theta)$.

- 1. Montrer que, pour tout θ_0 , $J_{\theta_0}: r \mapsto \frac{d}{d\theta}\big|_{\theta=\theta_0} H(r,\theta)$ est un champ de Jacobi.
- 2. Montrer que $||J_{\theta}(r)|| = r \frac{K(P)}{6}r^3 + o(r^3)$.
- 3. En déduire que $L(C_r) = 2\pi r \left(1 \frac{K(P)}{6}r^2 + o(r^2)\right)$.
- 4. Retrouver la courbure de \mathbb{S}^2 en calculant directement $L(C_r)$.

Exercice 3. Surjectivité de l'exponentielle sur les groupes de lie compacts.

Soit G un groupe de Lie connexe, e son élément neutre, h une métrique riemannienne bi-invariante sur G.

- 1. Montrer que ∇ , la connexion de Levi-Civita associée, est celle de l'exercice 1, question 1, du TD 8. (*Indication*: Montrer que le produit scalaire h_e sur T_eG est Ad-invariant. Puis utiliser la relation entre h, ∇ et $[\cdot,\cdot]$ permettant de construire ∇ .)
- 2. Montrer que la courbure sectionnelle de G est positive ou nulle.
- 3. Montrer que l'application exponentielle (de Lie) de G, exp : $\mathfrak{g} \to G$, et l'application exponentielle (riemannienne) de (G, h), exp_e : $T_eG \to G$, coïncident.
- 4. On suppose dans cette question que G est compact.
 - (a) Rappeler pourquoi G admet une métrique bi-invariante.
 - (b) Montrer que l'application $\exp: T_eG \to G$ est surjective.
 - (c) En déduire qu'il existe des points distincts reliés par au moins deux géodésiques distinctes.
- 5. (a) Montrer que l'application inverse $i: G \to G$ définie par $i(g) = g^{-1}$ est une isométrie de (G, h) fixant e telle que $T_e i = -\mathrm{id}_{\mathfrak{g}}$.
 - (b) En déduire que pour tout $x \in G$, il existe une isométrie s_x de (G, h) fixant x et telle que $T_x s_x = -\mathrm{id}_{T_x G}$ (G est alors dit espace globalement symétrique.)